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Reversible phosphorylation of protein hydroxyl groups is a
ubiquitous signaling mechanism that renders a limited set of genes
capable of cellular specialization and differentiation. In humans, % _o @01P4‘>
at least 518 genes encode protein kinases and 140 genes encode OH kinase HO™ Y
protein phosphatases, in total accounting for over 2.5% of all human - S f
gened. Changes in protein phosphorylation states and kinase activity \H ) \ﬂ l phosphatase \ﬂ/j)(
are associated with many human diseases, most notably Gancer.

We sought to use protein design to develop novel protein Glut2 Seri2 Phosphoser:12

architectures whose structures are dependent on their phosphoryzjgyre 1. Design of a phosphorylation-dependent motif, indicating the roles
lation state. Previous designs of phosphorylation-dependent proteinof Glu, Ser, and phosphoserine residues.

structure have involved stabilization of multimeric helical bundles

via electrostatic, helix dipole, or helix capping interactidng'e EF Hand DKNADGYIDAAELK
chose to focus on the design of a monomeric protein motif that PKID-PKA DKNADGWIDRASLA
undergoes a phosphorylation-dependent structural change. -

Ideally, a designed phosphorylation-dependent protein domain « PRIG PR TR
would (a) exhibit complete structural switching upon phosphory- PKID-Erk DKNADGWIDAASPA

lation; (b) include a protein kinase recognition sequence; (C) e Left: EF hand C&-binding loop (1cll), with Glu12 emphasized.
comprise a modular motif that is compatible with different protein Right: EF hand consensus sequence and kinase-inducible domain peptide
kinase recognition sequences; (d) include a fluorescent reportersequences. Side chains of residues in red contact metal. Tyr or Trp (magenta)
element for readout; and (e) consist entirely of canonical amino contacts metal via the main chain carbonyl.

acids, to enable its use as a genetically encoded phosphorylation-

dependent protein tag and as a building block in the design of larger Proteins, and thus may be tuned to incorporate the recognition
phosphorylation-dependent protein architectures. sequence of a protein serine/threonine kinase of intérest.

The key design element is the use of phosphoserine as an A series of kinase-inducible domain (pKID) peptides was
inducible mimic of a structurally important Glu residue. Phospho- Synthesized which comprised an EF hand consensus sequence, a
serine and Glu are approximately isosteric anions, suggesting thatfYPtophan at residue 7 to sensitize lanthanide emisSiand the
replacement of Glu with phosphoserine would generate a motif that recognition sequence of a kinase important in intracellular signaling

would bind metal in a phosphorylation-dependent manner (Figure (FI9ure 2). As initial targets, we synthesized peptides containing
1). Indeed, Glu is commonly used as a mimic of phosphosérine the minimal recognition sequences for the critical cellular kinases

Here, we employ an inverse approach, in which phosphoserine,PKA’ PKC, and the MAP kinase Erk. These minimal recognition

but not serine. mimics the electrostatic and Lewis base properties SEAUENCes, which include basic or helix-breaking residues that could
of Glu ' prop potentially disrupt lanthanide binding and include residues N-

This strategy was applied to the design of phosphorylation- terminal or C-term_inal to the ta_rget serine, provide a significant
: : . test of the generality of the design.
dependent EF hand domains. The EF hand contains a simple Fluorescence emission spect led that th hosphory-
- - o . ) ! ; pectra revealed that the nonphosphory

calc_lum-blndlng motif, in whlch the metal is bognd by five side lated peptides bound Fbpoorly (Figure 3), displaying very weak
cham_ groups and one main chain carbo_nyl_(_Flgure 2). EF hand terbium luminescence, consistent with the critical role of Glu12 in
proteins, such as calmodull_n, undergq a significant conform_atlonal metal binding. In contrast, all phosphorylated peptides displayed
change to a well-folded helixloop—helix structure upon calcium strong fluorescence emission in the presence Gf Tindicating
binding® DueT to the similar electronl_cs and ionic radii of caIC|ym the formation of a phosphopeptidenetal complex. Notably, the
and lanthanides, EF hands effectively coordinate lanthafides, f,orescence change upon phosphorylation by protein kinase A
thereby endowing the EF hand with the luminescent, magnetic, and rigure 3d) was similar to that observed in nonexpressible kinase
hydrolytic properties of lanthanidés. sensors and was significantly greater than that of any expressible

The EF hand motif accommodates a wide range of residues atkinase sensdtAll peptides displayed nearly complete dependence
most positions. In contrast, residue 12 of the EF hand is nearly on phosphorylation for fluorescenée.
invariantly Glu, which binds the metal in a bidentate manner.  Competition experiments were used to confirm site-specific
Replacement of Glu with phosphoserine would generate a motif |anthanide binding and to address whether pKID peptides are a
that would bind metal in a phosphorylation-dependent manner general phosphorylation-dependent lanthanide-binding motif. Ad-
(Figure 1): nonphosphorylated Ser is a poor Glu mimic and should dition of nonluminescent H9 to the phosphorylated pKID-PKE
poorly bind metal; in contrast, serine phosphorylation should lead Th3+ complex resulted in the loss of Thluminescence, consistent
to a tight proteir-metal complex. Critically, residues N-terminal  with formation of a pKID-PKCG-Ho*" complex® In contrast, strong
and C-terminal to residue 12 are poorly conserved across EF handfluorescence and no decrease in affinity of the phosphorylated
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The work herein is the first example of a designed, small,

a b ) X .
z . . monomeric, genetically encodable protein sequence whose structure
é c . t . is dependent on phosphorylation. The architecture is potentially
3 s e o applicable to a broad range of serine/threonine kinase recognition
§ DN s . motifs, providing a general approach toward the development of
§ P p . designed proteins whose structure and function are under the control
= N 2 * | of specific protein kinases.
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